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We examine the statistical mechanisms by which energy and scalar variance are 
cascaded to small scales for isotropic, three-dimensional turbulence. Two avenues are 
explored : (i) the traditional transfer function (defined by the nonlinear cascade that 
gives the time rate of change of the energy spectrum), and (ii) the bispectrum (the 
elementary triple-point correlation, averaged over directions perpendicular to three 
co-linear observation points). Our tools are direct numerical simulations (DNS), and 
the statistical theory of turbulence, here in the form of the test field model (TFM) 
(Kraichnan 1971). Comparison of the results indicates a fairly good quantitative 
agreement between DNS and the TFM at large Prandtl numbers (Pr 2 0.25), but 
substantial disagreement at lower Pr, where the transfer to small scales becomes too 
small. This disparity we trace to the Markovian aspect of the TFM; the more 
fundamental direct interaction approximation (DIA) (Kraichnan 1959) compares 
more favourably to DNS as Pr + 0. For Pr  N 1 ,  we compare DNS and TFM bispectra 
for velocity and scalar fields in both Fourier and physical space. The physical space 
representation of bispectra serves as a useful means of discriminating between 
velocity and scalar transfer. 

1. Introduction 
Perhaps the simplest measurement of turbulence is a single-point, time record of 

a velocity component or scalar field, such as temperature y( t ) .  Yet the triple-point 
correlation of such records, F ( t 1 ,  t,, t 3 )  = (y(tJ y(t,) y ( t 3 ) ) ,  the bispectrum, contains 
essential transfer information. Here, as elsewhere in this paper angle brackets 
denotes ensemble or, where appropriate, time averaging. Note, in this connection, 
that at  large Reynolds number R,, 9- may be transformed into spatial information 
via the Taylor hypothesis ri = vOti ,  where uo is the mean speed of the recording 
device, and rf are the corresponding spatial points. Of particular importance are 
bispectra of the form (u (x )  u(x+r,)  u(x+r , ) )  = Buuu(rl, r,) where u is the velocity 
field, since detailed knowledge of this quantity is equivalent to knowing the de- 
rivative skewness, S,,, = - ((au/a~)~)/((au/ax),>t - -azl azP(az1 +~z2)B, , , (x l ,  x,), 
x1 + x,, provided that the denominator entering S,,, is also known. Here it should 
be noted that x1,x2 are co-linear. To draw out the physical significance of the 
bispectra, note that impinging jets with spreading surfaces imply S,,, > 0 (Betchov 
1957) and the converse. Earlier comparisons of two-point closure (Herring 1 9 8 0 ~ )  
with both wind tunnel and atmospheric data (see also Van Atta  1979) indicated that 
both the scaling law for the velocity bispectrum, and the detailed ( r l ,  r ,)  distribution 
of B,,, were in reasonable accord with experiments. 

We describe here a direct numerical simulation (DNS) study of bispectra and 
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energy transfer mechanisms for decaying turbulence, including the equivalent 
transfer processes for scalar fields at  a range of Prandtl numbers, Pr, 
(8 2 Pr 2 0.0625). We compare DNS results with simple closure formulae, such as 
those derived from the test field model (TFM) (Kraichnan 1971; Herring & 
Kraichnan 1972), and, to a more limited extent, the direct interaction approximation 
(DIA) (Kraichnan 1959). For a scalar 8, we focus on Bee, = (O(x+r l )O(x+r2)u(x ) )  
(The bispectra Be,, are zero for isotropic turbulence). We note that the same 
arguments relating the velocity skewness to B,,, may here be made to relate BBBu to 
the mixed scalar skewness, See, = - ( (a8/az)2au/az))/( (i30/8x)2) ( (au/ax)2)k 

Early studies comparing the closure to experiments for scalar fields (Newman & 
Herring 1979; LarchevGque et al. 1980; Herring et al. 1982) suggested that the closure 
yields qualitatively satisfactory results for the decay of both velocity and passive 
scalar variances over a range of Reynolds and Prandtl numbers. More recent DNS 
and LES studies of energy and scalar transfer are those of Kerr (1985), Lesieur & 
Rogallo (1989), Lesieur, MBtais & Rogallo (1989), and Herring (1990). Kerfs DNS 
study contained extensive information on the behaviour of the scalar for a range of 
Pr. Finally, the recent study of MBtais & Lesieur (1991) examines the probability 
distribution function for turbulence with both active and passive scalars. 

In the present study, we find generally acceptable agreement with respect to 
energy and scalar variance transfer between DNS and TFM for large Prandtl 
numbers (Pr 2 0.25), but substantial disagreement for low Pr (Pr < 0.25). The failure 
of simple heuristic theory at low Pr is anticipated by the DNS study of Kerr (1985), 
who reported mixed scalar skewness substantially larger than those derived from the 
theory of Batchelor, Howells & Townsend (1959) (referred to hereafter as BHT). We 
note that at  low Pr, the TFM merges with the BHT theory. However, the results of 
the present study suggest that much of this discrepancy is attributable to the 
‘Markovian ’ characterization of the turbulence, inherent in both the BHT and TFM. 
This suppresses its (TFM) estimate of transfer to small scales for decaying turbulence 
at low Pr.  The DIA does not make such a Markovian characterization : consequently, 
at the small PBclet numbers encountered as Pr+O it has a more vigorous scalar 
transfer to small scales and agrees better with DNS. 

Chasnov, Canuto & Rogallo (1988) have earlier examined the low Pr regime, and 
report only small departures from the BHT theory. However, their results were for 
a stationary velocity field, and much of their findings pertained to velocity fields of 
near Gaussian statistics. The present study differs from theirs in that it involves 
decaying scalar turbulence with a dynamically evolving velocity field without 
forcing. The difficulty with the BHT theory noted here may apply only to the case 
in which Pr is so small that the PBclet number is also small. 

A traditional measure of the cascade of energy (or scalar variance) to small scales 
is the transfer function T(k, t ) ,  defined 3 (a, + ~ k ~ ) E , , ~ ( k )  = T,,e(k), where the index on 
E denotes the variance spectra in question, and v represents the viscosity or 
conductivity coefficient. Contrary to T(k), (which has only one degree of freedom), 
the bispectra (discussed above) are basically two-dimensional, whether viewed in 
physical space (zl, x 2 )  or in their equivalent Fourier representation (kl, k 2 ) .  As yet, 
experimental studies have focused on Fourier space representations, perhaps because 
the tools for describing data in this way are more readily available. But for DNS, i t  
is much easier to construct bispectra in physical space. For closures such as the TFM, 
the physical space construction of the bispectrum is only slightly more trouble than 
that of the Fourier representation, the latter is an easier basis for posing homogeneous 
problems. 
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The physical interpretation of bispectra is clearer in terms of (x1,x2) than ( k , ,  k2 ) .  
Thus, contours of Buuu(xl, x2) consist of a six-leaf rose, with alternating leaf-signs 
encountered on rotating around its origin. The principal positive leaf lies along 
x1 = x,. I t s  basic symmetry is 

Boo, on the other hand has only the symmetry 

and 

The symmetry (1 .1)  stems from homogeneity, whereas (1.3) and (1.4) are definitional. 
Symmetries (1.2) and (1.5) characterize turbulence whose statistics is reflectionally 
invariant. None of these are concerned with isotropic turbulence. Generally, in DNS 
(1.2) and (1.5) would be satisfied only approximately. Returning to the discussion of 
bispectra results, we find that the principle positive leaf of Boou is much narrower 
than that of B,,,. I n  Fourier space, the higher symmetry of B,,, indicates that  its 
first quadrant specification implies its knowledge in the entire (x,, 5,) plane. This is 
not true of B,, ; it  is asymmetric with respect to k,  + - k,. 

2. Theoretical concepts and definitions 
We describe here in detail the application of the theory for the scalar field, and 

defer to the earlier study (Herring 1980a) for the velocity field results. To begin, 
consider the mixed scalar bispectrum : 

BOB,, = (Ui(X)ecx+rl)e(X+r,)>, (2.1) 

where r,, r2 are collinear with ui, and angular brackets denote ensemble averages. The 
Fourier transform of Bee,, is 

J - W  

where k = (kl, k,, k3 ) .  BBBu,(klrpl) is related to  the Fourier transform of B ( x )  = 
&8(k) exp ( ik-x)  by 

where q = - k - p ,  and dk, E (dk,dk,) ,  etc. L3 is the normalizing volume. We assume 
L is sufficiently large so that the approximation 

C x (L/2rr),/dk (2.4) 

applies with impunity. The mixed scalar skewness SOB,, is computable from Bee,, from 

( ( a d a x )  (ae/a42> 
NU, 

Seeui - 

9 (2.5) 
dkl dP1 kl Pl (k1  +Pl)Bu,BB(klr P l )  

= -i.rwI-w NU80 
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where Naae = (( ( a a / a ~ ) ~ )  ( ( a b / a X ) 2 )  ( (ac/ax)z))k The velocity derivative skewness 
S,,, = -((au/a2)3)/((au/ax)z)~ is given by a formula identical to (2.5) except that 

We describe next the approximations to the basic dynamic quantities, 
(ui(q) uj(k) u&)) and (u,(q) e(k)  e @ ) ) ,  via the TFM (Kraichnan 1971 ; Herring & 
Kraichnan 1972). The application of this theory to the velocity bispectrum has been 
investigated earlier (Herring 1 9 8 0 ~ ) .  For subsequent reference, we will sketch the 
TFM evaluation of triple moments needed to evaluate (2.1) according to the closure, 
without much by way of rigour. Basically, we follow Kraichnan's (1959) direct 
interaction approximation (DIA) algorithm treating [u,(k), e(k)]  as a discrete 
collection of interacting degrees of freedom, whose multivariate statistics are nearly 
Gaussian. Correlations in (2.3) between modes (k ,p ,  q )  are induced through the 
interactions among this triplet as implied by the equation of motion for B(k). The 
latter is 

or, in Fourier representation, 

e-tu. 

ate = Kv2e-U.we (2.6) 

a,e(k) = -Kkze(k)-ip,u,(-q)e(-p)-i~m~,(-p)O(-q)-i &u,@')e(q'). 
k-p'+q' 

(2.7) 
In (2.7), we have split from the convolution sum that part explicitly referencing the 
triplet k ,p ,  q (the second and third terms on the right-hand side). The primes on the 
last term here indicate the omission of the second two terms, which are explicitly 
broken out. We then treat (e (k)  e@)  e (q ) )  as perturbatively small, writing it as 
(M(k)  e@)  e(q) + e(k)  se@) e(q) + e(k)  e@)  se(q)),  with &e(k, t )  given by 

M(k, t )  x - [ ds ge(k, t ,  s) {ipm urn( - q,  8 )  e( - p ,  S) + iq, urn( -p,  8) e( - q ,  8 ) )  + . . . . 
0 

(2.8) 
In  (2.8) ge(k, t ,  5 )  is the response of mode B(k) induced by a small perturbative force 
in which only the interactions of B(k) with @',q' )  that can be represented in terms 
of an eddy conductivity are included. For what follows, we replace ge by its ensemble 
mean, Ge(k, t ,  s), and parameterize the latter as 

Ge(k, t ,  s) x exp (-$(k) ( t - s ) ) .  (2.9) 
Formulae for qe(k )  are given in $3. To complete the calculation, we use (2.8) with (2.9) 
in the perturbative expression and evaluate the resulting fourth-order moments as if 
Gaussian. The result is 

(urn( -k-P) e@)> = Si{p,-q,@.q/q2)) 
{U(d W )  - U(q) W)) {re(k)  +re@)) + r S W 1 ,  (2.10) 

where U P )  = ( ~ / 2 7 ~ ) 3 ( U , ( k ) u ~ ( - k ) ) ,  (2.11) 

~ ( k )  = ( ~ / 2 n ) 3 ( e ( k )  e( 4 ) ) .  (2.12) 

In (2.10) q = - k-p ,  and the 7 are relaxation rates for the velocity and scalar fields. 
They may be approximated by (Herring et aE. 1982) : 

$(k) x 2q"(k). 
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We describe the determination of the g-factors in 93. The DIA equivalent to the 
right-hand side of (2.10) is 

~i{p~-(P.4)q~/s'}ItdsC8(k,t,s) 0 @(p,t,S) U(q, t , 4 + @ + d ,  

where Ge(k, t, s) is the scalar Green's function. The approximations needed to reduce 
the DIA expression to (2.10) are clear. Finally, we must perform the (dp,d4,) 
integrals in (2.3), for which cylindrical coordinates are convenient. Details are in 
Herring ( 1980 a). 

3. Energy and scalar variance transfer: comparisons with numerical 
simulations at moderate R, 

We first compare the predictions of the TFM-DIA for energy and scalar variance 
transfer T,, defined as 3 (a,+2(v, Kk2)E,,,(k, t )  = T,,e(k, t ) )  to DNS for decaying 
turbulence with a passive scalar field. To study this, we need equations of evolution 
for E,(k, t) = 2xk2U(k), and E,(k) = 2zk2@(k). Using the same approximation used to 

As originally proposed (Kraichnan 1971 ; Herring & Kraichnan 1972), equations 
(3.5) and (3.6) contain arbitrary scaling factors g and ge. Equation (3.6) follows from 
Kraichnan's (1971) suggestion that the scalar eddy-relaxation rate r e ( k )  be 
proportional to the relaxation rate ( y C ( k ) )  of a compressive field convected by u. 
Equation (3.6) has an additional factor ge. It is arbitrary if (3.1)-(3.10) are derived 
via the eddy-damped quasi-normal Markovian (EDQNM) approximation (Lar- 
chevQque & Lesieur 1981), but is unity if determined by comparison with DIA. The 
values of the g are set either by comparison to experiments or by an appeal to more 
basic theory. Larcheveque & Lesieur (1981), for example, following an abridged 
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FIQURE 1. Comparison of 1283 DNS (histograms) to the TFM (solid lines), and the DIA (dashed 
lines) at t = 1.0. (a) Energy spectrum, labelled E(k ,  1 ) .  Scalar spectra (labelled E ( k , 2 ) )  are given in 
(b, c, d, e , f )  for Pr = (8.0,2.0, 1.0,0.25, 0.0625), respectively. TFM parameters (see (3 .6)  and (3 .7))  
are (g,go,go) = (1.16, 0.5, 1.0). In (d), the long-dashed line is the DIA, while the short-dashed line 
is TFM with (go, go = 0 ,  3.61). 

Lagrangian history (Kraichnan 1964) analogy, proposed ge = 0, and Qe = 3.61. This 
choice corresponds to no memory loss for the scalar along Lagrangian trajectories 
( g o  = 0 ) ,  and to the condition that at  large Reynolds and PBclet numbers, the 
Corrsin-Oboukhov constant C,, = 0.67, (Ee(k)  = C,, E e l € !  Pi). Here E ,  and €0 are the 
dissipation of kinetic energy and scalar variance. Their choice has the additional 
virtue of predicting a satisfactory value of the Batchelor et al. (1959) constant at 
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large Pr, and of producing analytically tractable forms for certain turbulence 
quantities (for example, pair dispersion by turbulent motion). Other theoretical 
proposals to determine (9 ,  gel and Qe) are based on the requirement that the TFM 
yield the same results as the DIA (which has no arbitrary constants) for a problem 
for which the DIA is thought to be accurate. Kraichnan proposed that such a 
comparison case be thermal equilibrium (v = K = 0) for the system comprising a band 
of wavenumber k, - e < k < k, + e , e  + 0. An alternative comparison problem is to 
require the TFM and DIA to agree as k+O, provided the DIA is exponentially 
parameterized, as in (2.9). The last two alternatives yield nearly the same results for 
practical purposes: ( g  = 1.116, go = 0.5, and Qe = 1.0). Identifying the coefficients by 
a k+O comparison of theories is quite similar to the renormalization group 
computation of Dannevik, Yakhot & Orszag (1987). In any case, in our comparisons 
with DNS, one preliminary consideration is the optimal choice of go, and Qe. A more 
important consideration is to form an assessment of the accuracy, particularly over 
a range of Pr. 

Here the TFM, DIA, and DNS are compared for R, - 30.0, and for initial 
E,(k,  O),E,(k,O) spectra of the form 

E,(k) = 16(2/n)i(u:) ( k 3  k4 exp ( - 2 ( k 2 / k 3 ) ,  (3.11a) 

E&k) = 16(2/x)t(8:) ( k i 5 )  k4 exp ( -2(k2/ki)) .  (3.1 1 b)  

Initial conditions for the DNS u(k, 0 )  and B(k, 0) are uncorrelated, Gaussian random 
numbers as generated by standard pseudo-random number procedure (Kerr 1985), 
and k, = k@ = 4.757. The DNS spectra are (3.11a, b ) ,  with ensemble averages 
interpreted as wave-number, unit-shell averages, i.e. 

(&(k) ) (k )  = x &(W, k = (1 ,2 ,  ... 1. (3.12) 

In (3.11) u, = 0, = 1.0 are the initial r.m.s. values of velocity and the scalar. With 
a value of viscosity v = 0.01189, the Taylor microscale Reynolds number, 
R,(t = 0) = 35.0. These choices for u, and v guarantee a well-resolved dissipation 
range (for both the DNS and TFM) during the course of the run (t < 1.0, where the 
unit of time is L/(E,(O))i, with L the initial integral scale and E,(O) the initial 
energy). The peak wavenumber, k,, is sufficiently large (compared to the DNS low 
wavenumber cutoff (k,  = 1.0)) that interactions in the neighbourhood of k - 1 play 
a negligible role in the higher-k dynamics. 

We examine first how faithfully the TFM and DIA track the energy transfer 
processes for I( and 8. We do not record the DIA equivalent of (3.1)-(3.10), for the 
sake of brevity; they may be found in Newman & Herring (1979). Comparisons are 
made here for initial spectra (3.1 1) and for a range of Prandtl numbers : Pr = 8.0,2.0, 
1.0, 0.25, 0.0625. The comparisons (figure 1) are at  t = 1.0. Shown are E,(k,t = 1 )  
(figure l a ) ,  and E,(k,t = 1 )  in figure 1 ( & f )  for (Pr = 8.0, 2.0, 1.0, 0.25, 0.0625), 
respectively. Figure 2 shows the same comparison for the energy transfer spectra, 
T,(k, t ) ,  T,(k, t )  (recall, T,,E(k)3{(a+2(v,K) k2}Eu,@(k) = T,,J. TFM results are for 
parameters g,g@, @e = (1.16,0.5,1.0) only, except for figure 1 ( d ) ,  where the short- 
dashed line indicates the choice (go, @@ = 0,3.61) (see (3.6)).  The latter corresponds to 
the EDQNM choice of LarchevQque & Lesieur (1981). DIA results in figures 1 and 2 
are indicated by the dashed lines; in figure 1 ( d ) ,  the DIA is the long-dashed line. 

Figure 1 suggests that the DIA is more accurate in the energy-containing range 
but less so than the TFM for the dissipation range. For our purposes, we may take 

k.-;<lkl<k.+f 
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FIGURE 2. Comparison of 12@ DNS (histogram) to the TFM (smooth lines), and the DIA (dashed 
lines). (a) Energy transfer spectrum T(k, 1) .  Scalar variance transfer spectra, T(k,  2) are given in (a, 
c, d,  e , f )  for Pr = (8.0,2.0,1.0,0.25,0.0625), respectively. The TFM parameters (see (3.6) and (3.7)) 
are: (g,gs,@s) = (1.16, 0.5, 1.0). T ( k ) ~ ( a , + 2 v ~ ~ ) E , , ( k )  = Tus. 

the ‘energy-containing range’ as the region in wavenumber where T(k)  < 0, and the 
dissipation range as where the converse is so. At the R, considered here ( -  20), the 
inertial range is vestigial, but would occur (at much higher R,) where T(k) N 0. The 
large DIA errors at large k result from the spurious dependence of its T,,,(k) on large- 
scale sweeping. At lower Pr( x 0.25,0.0625), the DIA seems to become more accurate 
than the TFM, even at the highest k considered, but with perhaps an excess of 
variance transfer a t  very high k for Pr = 0.0625. We shall soon speculate as to why 
this should be so. 

We focus next on the TFM results in figure 2. For the scalar transfer, the 
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agreement with DNS is better in the range 0.25 < P r  < 2.0, becoming poorer for Pr 
outside this range, especially for T, (k )  as Pr+O. Overall, for all values of Pr 
investigated, the excess DNS energy in the dissipation range, as compared to that for 
the TFM, may signal the presence of small-scale intermittency in the former and 
absence of it in the latter. In this connection, MBtais & Lesieur (1991) have found 
flatness factors for a,e of x 5 for Pr = 1, which indicates significant intermittency 
for the scalar derivatives and for the O(k)  spectrum at high k .  On the other hand, at  
large Pr ( x 8), E&k) for DNS exceeds that of the TFM by a factor of about 2, and 
this may be a result of 'inertial range ' (i.e. large-scale) intermittency. However, 
considering the better performance of the DIA in the energy-containing range for 
large Pr,  we cannot rule out that the 'Markovian' aspects of the TFM render it 
unable to follow with accuracy rapidly decaying turbulence, such as the case here. 

The DIA (shown in figure 2 by the dashed lines) compares favourably to the TFM 
at the smaller Pr, but not so well at  large Pr,  especially in the dissipation range. As 
mentioned above, its poor behaviour at  Pr > 1 may be understood in terms of its 
spurious sensitivity to large-scale sweeping (lack of invariance to random Galilean 
transformations (Kraichnan 1964)). Thus instead of E@(k) - €&V/E,)'k-' as the 
high Pr,  Batchelor et al. (1959) inertial range, the DIA has E&k) - @a,/(v/s,), 
independent of k. In these expressions, B denotes dissipation of the indexed quantity, 
and E, is the total kinetic energy. Although such an analysis is usually made for 
large Reynolds numbers, reflections on its derivation suggest that it applies to small 
R, as well, at  least for sufficiently large Pr. 

The errors in TFM at P r  = 0.0625 may be thought surprising (see especially figure 
2 f ), since we expected progressively weakened non-Gaussian effects as Pr + 0 ,  at 
least according to Batchelor et al. (1959). We note that the TFM incorporates this 
low-Pr theory of BHT in quantitative form : as Pr + 0, TFM b BHT. 

The discrepancy at low k between TFM and DNS for P r  = 0.0625 may be 
attributable to sample errors. There are after all only two wavenumber bins where 
T,(k)  < 0. But sampling errors at larger k (where To 2 0) are small, and the TFM 
underestimation of is significant. The extent of the DNS-TFM discrepancy may 
be judged by comparing DNS and the TFM for the mixed scalar skewness, (2.5). For 
Pr = 1/16 this is (0.286,0.177) for DNS and the TFM respectively. On the other, the 
DIA gives S,,, = 0.260. 

The comparisons of the DNS, DIA, and TFM discussed here suggest that the 
reason the TFM gives increasingly poor results as Pr + 0 is associated with the fact 
that Markovian closures (such as the TFM) underestimate energy (or scalar variance) 
transport, when compared to their non-Markovian counterpart. Generally, a 
Markovianization of a theory weakens transport to small scales, by scrambling 
(through its representation of the turbulent force (u.Vu) as white noise) features 
which would otherwise be aligned with the dominant strain. As noted by Herring & 
Kerr (1982), such an underestimation increases rapidly as R,+O (see their figure 8). 
According to that study, the TFM begins to severely underestimate the velocity 
derivative skewness, S,,, for R, < 5. On the other hand, the DIA (which is not 
Markovianized) compares well with DNS, down to the lowest R, x 0.5 investigated. 

The scalar equivalent of R, is the (microscale) PBclet number, 

pA = {(d) (ez)/(ae/az)z)}t/(PrV). 

By analogy with the remarks of the last paragraph, we may expect the 
Markovianization errors to become significant for PA 5 5. For the present study, and 
for P r  = 0.25, PA is 6.59, whereas for P r  = 0.0625, PA = 3.03. The low-Pr discrepancy 
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FIQURE 3. p(k ,  t )  = F,(k)/F,O(k) - 1, a measure of the non-Gaussianity of the ‘nonlinear ’ force, given 
by (3.15). HereF,G(k) is the value ofF8(k) ifthefieldsu(k,t),B(k,t) were Gaussian (see (3.13)-(3.14)). 

discussed here relates to the variance transfer function, whereas the TFM-DNS 
comparison for E,(k, t )  (as shown in figure i f )  is more satisfactory, at least for the 
time span investigated. 

We next give some information on non-Gaussian aspects of the scalar transfer 
mechanism by examining the statistics of the ‘forcing function’ in the equations of 
motion for O(k,t). That is, writing (2.6) in the form 

(a, + K k 2 )  O N ,  4 = f,W, t ) ,  (3.13) 
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we ask for those statistical descriptors of f,(k, u, 0) that indicate non-Gaussian 
behaviour. The simplest of these is the variance spectra of f ,(k),  

F*W> t )  = <Ife(k)12>. (3.14) 

We compare F, to what would be obtained if (u(k),  0(k)) were from a multivariate 
Gaussian distribution using the spectrum 

p ( k ,  t )  -1  +F’(k)/F,G(k) (3.15) 

as a simple measure of non-Gaussianity. Note that (3.15) defines p(k )  to be the ratio 
of correlated power to the Gaussian. Here, Ff is that F obtained for (u(k),O(k)) 
multivariate Gaussian, with the same spectra E,(k) ,  E,(k) and ( (u(k)  d (  -k)) = 0) as 
the evolved fields. Comparisons are given in figure 3 (a-f), with figure 3 (a) the ratio 
for the velocity force spectra. A comparison of figures 2 and 3 shows that p reaches 
a maximum for wavenumbers exceeding those of maximum energy extraction, where 
T,,,(k) is strongly negative. At  higher k, where Tu,e > O,p(k )  becomes negative and 
remains so until the far dissipation-range scales. These scales are larger than the 
aliasing wavenumber k, = 42. The negative region defines scales for which the flow’s 
structures have small ‘Eulerian’ accelerations. The magnitude of p - 0.5 is typical 
of the reduction of the ‘turbulence force ’ observed in other simulations, and is also 
predicted by statistical theories (Herring 1980 b ; Kraichnan & Panda 1988 ; Chen 
et al. 1989). 

With respect to the kinetic energy transfer we are in agreement with the 
statements of Domaradzki & Rogallo (1990), who note good agreement between 
DNA and EDQNM for moderate R,. However, their study was for a spectrum 
E(k ,  0) - k(k, + k )  exp ( - c k )  which is centred much more on large scales than (3.11), 
and hence decays more slowly with less vigorous transfer. These authors, moreover, 
normalize their EDQNM estimates with those of their DNS, thereby testing only the 
shape of the energy transfer function at a single time. 

4. Bispectra results 
To facilitate the DNS evaluation of (1.1) and (2.1), we use the equivalence between 

ensemble and space averaging to write the physical space form of the bispectra as 

Here 2L is the periodic box size, assumed large compared to integral scales of the 
turbulence, and L is the unit vector in the direction of u. The discretized version of 
(4.1) (as implemented by (2.4)) is used to compute the DNS version ofB,,, and B-,. 
For isotropic initial conditions, statistical scatter in (4.1) may be reduced by using 
coordinate labelling equivalences. 

DNS results for Buuu(zl, z2) and B,,(xl, z2) are presented in figure 4(a, b) .  Here 
initial conditions are 

(4.2) 

with C3J:dkE(k) = 1, k, = 8, and v = K = 0.01. Initial conditions in (4.2) evolve 
more rapidly than those studied in $3, and additionally allow the large scales (small 
k) to develop according to dynamics rather than to be fossils of the initial conditions. 
Since the spectra are centred at higher k than (3.11), they also have smaller statistical 

E,,,(k, 0) = Ck8 exp ( - 4(k/k,)2) 
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FIGURE 4. (a) DNS Buuu(zl, z2), and ( b )  BBBu(zl, z2), for decaying turbulence whose initial 
spectrum is (4.2). Resolution of DNS is 12%'. The evolution time is t = 1.233, 
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FI~URE 5. As figure 4, but for the TFM. 
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scatter, attributable to  the finite band averaging (3.12). The price paid for lower 
scatter is a lowering of R, : for (3.1 1 a, b) ,  a t  the time for which the spectra of figures 
1 and 2 are shown ( t  = 1.00), R, - 20, while for (4.2) (at t = 1.22, the time a t  which 
bispectra are displayed), R, - 10. Spectra (4.2) were used in the DNS study of 
Lesieur & Rogallo (1989), and the comparative DNS-TFM study of Herring (1990). 
However, in those studies the viscosity and conductivity were replaced by turbulent 
viscosity and conductivity, which allows much higher effective R, to be examined. 

In  discussing figure 4(a, b) i t  is useful to have the integral scale 

L u -  = (F) j: k-lE(k) dk//rE(k) dk, 

and Taylor microscale 

These are 0.4017, and 0.2623, while the equivalent scalar lengthscales 

A, = [(U2)/((azU)2)].t.  

are 0.2885,0.1817). Thus, the width of the major leaf along the 45" axis (as measured 
by the zero-contour) is - O.63Lu, and the width of the positive lobe in the third 
quadrant of figure 4(b) is - 0.40L,. 

The symmetry x1 + x2 is apparent in figure 4 (a, b )  as is the higher symmetry of 
B,,, relative to that of B88u. Of course, much of the busy small-scale features a t  large 
1x1-x21, result from the finite size of the discrete representation of the averages in 
(4.1). On the other hand, it seems clear that the six-leaf rose a t  the centre of figure 
4(a), and the five-leaf rose of figure 4(b) are real features. These central features of 
the DNS are also a property of the TFM bispectra as well. The TFM results are shown 
in figure 5(a, b). The maximum in B,,, occurs a t  a distance of 1.22 from the origin, 
which is about l.LL, where L is the integral scale of the turbulence. 

Along x1 = x 2 ,  we expect positive values of B for ( x 1 , x 2  2 0) ,  (and negative for 
( x l ,  x 2 )  < 0). For B,,,, this follows from simple advection arguments for u2, and for 
B,, the same argument for e2 holds (recall that B 5 5 u ( ~ 1 , x 1 )  = ( e ( x J u ( 0 ) ) ) .  This 
positive region for x1 2 0 should persist for about one large-scale correlation length 
along the diagonal. Transverse to the diagonal, the advective correlation region is 
shorter, particularly for B8,,. Notice that in figure 4(b) for B,, no negative region is 
discernable along x1 = x2, x1 < 0. This violation of an antisymmetry feature, we 
believe, is attributable to the accidental asymmetry in the initial data of the DNS. 
As noted in the introduction, the violation of symmetry (1.4) stems from a lack of 
(statistical) reflectional invariance of the initial data for DNS. For the velocity field, 
a measure of the violation of (1.2) is the normalized helicity, 

(u .V  x u)/((u">"(((V x u)")"), 

which for the DNS considered here has an initial value of 0.0182. The corresponding 
measure for 0 would be 

b k  (e~(p,ei(k)/ldk(le(k)l2). 

but we have no data on this point. (Subscripts r and i denote real and imaginary 
parts.) 

Figures 6 and 7 compare the DNS and TFM for Bau, = ik, k2(k1 +k2)B,,,(kl, k,) 
and BiBu = ik, k2(k ,+k2)B88u(k1 ,  k 2 ) .  Here, multiplication by the factor ik, k 2 ( k l + k , )  
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FIGURE 6. Fourier-transformed derivative bispectra : (a )  Biu=(kl, k,) = ik, k,(k,  + k,)Buuu(kl, k,), 
and ( b )  B&,(k,, k , )  = ik, k,(k,  + k,) B,,(k,, k,) for DNS. Initial conditions are (4.2), and evolved time 
is t = 1.23 large-scale eddy turnover times. 

means that the B are the bispectra of derivatives of the fields comprising the B. As 
noted in the introduction, and in the discussion surrounding (2.5), 

is proportional to the corresponding derivative skewness. Figure 7 shows the half- 
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FIQURE 7 .  As figure 6 but for the TFM. 

plane, ( -  k,,, < k,  < k,,,), (0 < k ,  < k,,,), k,,, = 64. For Buuu(kl,  k , ) ,  the defi- 
nitional symmetry (1.1) implies Buuu(kl,k2) = Buuu(k2, k, )  = Buuu(kl, - k l - k , ) .  For 
B&,, the second symmetry is absent. Thus, as is evident in figure 6, the negative 
quadrant of Buuu is implied by the positive quadrant, but such is not ao for B&,. It 
is of interest to note that for the skewness flu,,, two-thirds of its contribution comes 
from the negative quadrant (and its complex counterpart), while for Sku, the 
dominance of the negative quadrant is even stronger. 
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5. Discussion and concluding remarks 
We have examined here nonlinear aspects of energy and scalar variance decay 

from two separate perspectives. The first, traditional to turbulence theory, consists 
of comparing theory and simulation for the spectral transfer function T,,,(k, t )  for a 
range of Prandtl numbers (0.0625 < Pr < 8.0). Here, for R, - 30, we note a 
reasonable agreement between the TFM and DNS for large Pr, but a perhaps 
surprising lack of agreement for Pr < 0.25. Again, we recall that the discrepancy 
described here pertains to the variance transfer function at small scales; the 
DNS-TFM comparison for the variance spectrum (as shown in figure if)  is more 
satisfactory. 

These findings concur with earlier DNS results of Kerr (1985), who noted that at  
low Pr, See, from DNS was significantly larger than that estimated from the low-Pr 
BHT theory. Basically, this theory is an assertion (for scalar-velocity cumulants) of 
single time quasi-normality in the limit Pr  + 0, and is coincident with the TFM in this 
limit. We have also compared the DNS to the DIA, and this comparison suggests 
that the low-Pr (TFM-DNS) discrepancy stems from the ‘Markovian’ step in the 
derivation of the TFM. The DIA, on the other hand, becomes equivalent to a two- 
time quasi-normal scalar variance theory as Pr  + 0. This statement holds only with 
respect to the scalar field. The low-Pr agreement of the DIA with DNS is better than 
that of the TFM; it is not perfect, as illustrated by the significant excess transfer at  
high k for Pr = 0.0625. There are presumably some effects here of the lack of random 
Galilean invariance ; it would be of interest to consider the Lagrangian history theory 
(Kraichnan 1964), or the, Lagrangian theory of Kaneda (1981), to see if either 
performs better in this regard. 

We have argued that the small-scale variance transfer errors in the TFM become 
serious as Pr+O when the microscale PBclet number drops below about 5. Our 
reasoning here is by analogy with the velocity field dynamics, and is as yet 
unsupported by computations at  high R, and low Pr. The basic point is that 
Markovianization weakens transfer to small scales. Perhaps the clearest illustration 
of this point is the early decay calculations of Herring & Kraichnan (1972), who note 
a - 30 Yo decrease in the velocity derivative skewness in passing from the DIA to its 
Markovian version (essentially Edward’s 1964 theory). In any case, we would not 
argue that such errors are serious for sufficiently high R, at any Pr. 

Chasnov (1991) has recently reported good agreement between large-eddy 
simulations and BHT in the inertial-conductive range for both decaying and forced 
stationary turbulence. However, we should note that the discrepancy addressed in 
the present paper pertains in large part to the dissipation range, where the mixed 
scalar skewness receives most of its contribution. This region is not assessable in 
Chasnov’s simulation, since the large-eddy simulations have no realistic dissipation 
range. 

Gibson (1968) (see also Gibson, Ashurst & Kerstein 1988) has suggested that the 
failure of the BHT theory to maintain a sufficiently large value of S,, with 
decreasing Pr is associated with the accumulation of scalar fluctuations in the neutral 
point of the flow, in such a way that S,, depends dominantly on the small-scale 
strain (for any Pr). This hypothesis would imply that the small-scale structures are 
unexpectedly immune to molecular dissipation. Generally, we expect the presence of 
such structures to be manifested by a non-Gaussian distribution function for 8. In 
this connection, our examination of the ‘scalar force’ (equation (3.14)) for a range of 
P r  suggested only moderate non-Gaussianity at  the higher range of Pr,  and 
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increasing Gaussianity with decreasing Pr) .  Such findings do not lend support to  
Gibson’s ideas, but clearly numerical results a t  sufficiently large R, so that the 
‘Markovian’ problem is not encountered are needed in order to be conclusive. 

An additional comment with respect to the DIA comparison is that it seems 
superior to the TFM in the energy-containing range at all Pr investigated. This may 
signify its ability to  capture more faithfully the rapidly evolving dynamics of low R, 
flow than a ‘Markovian’ theory such as the TFM. 

The second perspective, that of the bispectra, is perhaps more directly related to 
measurements, but less revealing of dynamics. Thus, B,,, comprises elementary 
triple-moment correlations, but not in a way directly related to the energy transfer 
function, T(k,t). Bispectra have the same relationship to energy transfer as one- 
dimensional spectra have to  the three-dimensional spectra : both tend to  smooth out 
any small-scale details. 

We should note, however, that in a certain respect, bispectra discriminate between 
velocity and scalar transfer mechanisms better than the energy transfer. Thus in 
figure 2 ( a ) ,  T,(k) is qualitatively indistinguishable from figure 2 ( d )  (T,(k), Pr = i),  
whereas the distinction between figure 4(a), BUuu(xl, xz), and figure 4(b), BeBu(xl, x2), 
is clear. Of course the dimension of B is 2, whereas that of T is 1. 

The TFM bispectra comparisons clearly reproduce the topological features of both 
B,,,, and Be@, (see figures 4 and 5). Moreover, the comparisons of derivative bispectra 
for DNS and TFM in figure 6 are also in reasonable accord. To make a quantitative 
assessment of these comparisons complete, we must face the question of statistical 
scatter produced by the finite nature of the DNS, and the dependency of the results 
on the random numbers used to  initialize fields I( and 8. One approach to this problem 
is to  compare DNS bispectra from (4.1) with equivalent results averaging over only 
the x-y directions, i.e. including only the (2-y) sums in (4.1) as implemented by 
(2.4). Such comparisons (not shown here) indicate this reduced symmetry averaging 
(x-y) to  be entirely adequate to  give even quantitative features of B,,,, Be@u. 
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for many useful discussions. We also are grateful to Dr 0. Thual, of the Advanced 
Study Program of W A R  (and CERFACS, Toulouse, France) for consultations and 
assistance in implementing the FFT’s used in bispectra evaluation. We also benefited 
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